The Importance of Land-on Science for Answering Key Questions about Early Mars with the Mars2020 mission

“Exploration for life on Mars requires a broad understanding of integrated planetary processes…Therefore, this endeavor must also investigate the geological and geophysical evolution of Mars; the history of its volatiles and climate; the nature of the surface and subsurface environments, now and in the past; the temporal and geographic distribution of liquid water; and the availability of other resources (e.g., energy) necessary for life.

[Decadal Survey, Appendix: Caching Rover concept, 2010].

Bethany Ehlmann
Caltech, JPL

NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology.

1st Mars 2020 Landing Site Workshop
May 14, 2014
Mars2020 Science Objectives

<table>
<thead>
<tr>
<th>Objective A:</th>
<th>Exploring an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective B:</td>
<td>Support the search for biosignatures (preservation potential, characterization) via 1) context imaging, 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection</td>
</tr>
<tr>
<td>Objective C:</td>
<td>Assemble a cache of scientifically selected, well-documented samples packaged in such a way that they could be returned to Earth</td>
</tr>
</tbody>
</table>

- To make Mars2020 the first step in the multi-decadal goal of sample return, we need to collect a cache *compelling* enough to initiate the return mission.
Mars: The Decadal-Level Questions

- Think big, think decadal-level questions, embrace Mars’ biggest mysteries, think diversity

- Mars 2020 will explore a site that is astrobiologically relevant and habitable

- This is most of the candidate sites... how to discriminate?
 - Taphonomy (organic preservation)
 - Mission efficiency
 - Diversity
 - Number of “Decadal Level” contributions to broad questions in planetary science
Mars: The Decadal-Level Questions

- Think big, think decadal-level questions, embrace Mars’ biggest mysteries, think diversity

- Mars 2020 will explore a site that is astrobiologically relevant and habitable

- This is most of the candidate sites... how to discriminate?
 - Taphonomy (organic preservation)
 - Mission efficiency
 - Diversity
 - Number of “Decadal Level” contributions to broad questions in planetary science
Taphonomy

- Organics preservation on Earth from <3.5 Ga is well-understood
 - Follow the sedimentary basins
 - Find lacustrine deposits of non-diagenetically altered fine-grained materials
- Organics preservation on Earth from >3.5 Ga is less well-documented
- Mars, >3.5 Ga, preserves diverse aqueous environments
 - Open- and closed-basin lakes
 - Silica deposits around volcanic vents
 - Carbonate deposits
 - Chloride and sulfate evaporites
 - Sedimentary aquifers (repeated groundwater fluctuations)
 - Hydrothermal systems with mineralized veins
 - Igneous rocks
Taphonomy

- Organics preservation on Earth from <3.5 Ga is well-understood
 - Follow the sedimentary basins
 - Find lacustrine deposits of non-diagenetically altered fine-grained materials
- Organics preservation on Earth from >3.5Ga is less well-documented
- Mars, >3.5Ga, preserves diverse aqueous environments
 - Open- and closed-basin lakes
 - Silica deposits around volcanic vents
 - Carbonate deposits
 - Chloride and sulfate evaporites
 - Sedimentary aquifers (repeated groundwater fluctuations)
 - Hydrothermal systems with mineralized veins
 - Igneous rocks

These too (Gale); but inherited from igneous rocks? Meteorite infall? [Freissinet et al; Eigenbrode et al., in review]

Confirmed this has organic matter (lab analysis of meteorites) [Steele et al., 2012]
Taphonomy

- Organics preservation on Earth from <3.5 Ga is well-understood
 - Follow the sedimentary basins
 - Find lacustrine deposits of non-diagenetically altered fine-grained materials
- Organics preservation on Earth from >3.5 Ga is less well-documented
- Mars, >3.5 Ga, preserves diverse aqueous environments
 - Open- and closed-basin lakes
 - Silica deposits around volcanic vents
 - Carbonate deposits
 - Chloride and sulfate evaporites
 - Sedimentary aquifers (repeated groundwater fluctuations)
 - Hydrothermal systems with mineralized veins
 - Igneous rocks

→ Not clear we know enough that taphonomy is the decider

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 6
Mars: The Decadal-Level Questions

- Think big, think decadal-level questions, embrace Mars’ biggest mysteries, think diversity

- Mars 2020 will explore a site that is astrobiologically relevant and habitable

- This is most of the candidate sites… how to discriminate?
 - Taphonomy (organic preservation)
 - Mission efficiency
 - Diversity
 - Number of “Decadal Level” contributions to broad questions in planetary science
Challenging Primary Mission: Drive Distance vs. # Samples

These scenarios all assume several factors faster than MSL.

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 8
4 levers on science return/time

- Suggest we deploy all of these levers to our advantage, approximately in this priority order (more later)

- **1** EDL System Capability + Landing Site Selection
- **2** Payload Choices: Req’d Time for Measurement
- **3** Mobility System Capability
- **4** Payload Choices: Req’d Time Measurement

modified from Mars2020 SDT
Mars: The Decadal-Level Questions

- Think big, think decadal-level questions, embrace Mars’ biggest mysteries, think diversity

- Mars 2020 will explore a site that is astrobiologically relevant and habitable

- This is most of the candidate sites… how to discriminate?
 - Taphonomy (organic preservation)
 - Mission efficiency
 - Diversity
 - Number of “Decadal Level” contributions to broad questions in planetary science
Decadal Survey Questions

- Accretion, volatile supply, planetary differentiation, atmosphere evolution, role of large impacts
- Organic matter primordial sources
- Ancient habitats/life
- Planetary climate change and systems science

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 11

1. What governed the accretion, supply of water, chemistry, and internal differentiation of the inner planets and the evolution of their atmospheres, and what roles did bombardment by large projectiles play?

2. Mars, the Moon, Trojans, Venus, asteroids, comets (see Chapters 4, 5, and 6)

3. What were the primordial sources of organic matter, and where does organic synthesis continue today?

4. Comets, asteroids, Trojans, Kuiper belt objects, Enceladus, Europa, Mars, Titan (see Chapters 4, 5, 6, and 8)

5. Did Mars or Venus host ancient aqueous environments conducive to early life, and is there evidence that life emerged?

6. Beyond Earth, are there modern habitats elsewhere in the solar system with necessary conditions, organic matter, water, energy, and nutrients to sustain life, and do organisms live there now?

7. Enceladus, Europa, Mars, Titan (see Chapters 6 and 8)

8. Can understanding the roles of physics, chemistry, geology, and dynamics in driving planetary atmospheres and climates lead to a better understanding of climate change on Earth?

9. Mars, Jupiter, Neptune, Saturn, Titan, Uranus, Venus (see Chapters 5, 6, and 8)

10. How have the myriad chemical and physical processes that shaped the solar system operated, interacted, and evolved over time?

All solar system destinations. (see Chapters 4, 5, 6, 7, and 8)
What are specific, Decadal-level questions for Mars?
Mars’ Biggest Mysteries/Decadal-level questions

1) What is the nature of the Noachian crust?

2) Where is the carbon/water? (Mars’ geochemical cycles?)

3) How heterogenous is the Mars mantle?

4) When did the dynamo cease?

5) How old is the Martian surface?
Global View of Aqueous Minerals: I. Widespread (pre?) Noachian clay minerals

Crustal Clays: 1000s of clay minerals exposed in craters

[Mustard et al., Nature, 2008]
Crustal Clays: No large Noachian terrain without aqueous alteration; but large contiguous exposures are special spots for exploration.

What do these clays tell us about Mars:
- Deuteric?
- Hydrothermal?
- Metamorphic?
- Diagenetic?
- Weathering?
- Precipitate?

- Not discernible from orbit – requires petrology

Ehlmann et al., 2009, JGR; Mustard et al., 2009, JGR
Mystery #1: Ancient Crust: What is it — Lavas, Volcaniclastics, Sediments?

- Is the altered ancient crust mainly
 - Lavas, sometimes altered by subsurface groundwater [McEwen et al., 1999; Ehlmann et al., 2011]
 - Sediments with precipitated/transported minerals [Grotzinger and Milliken, 2013]
 - Loosely consolidated volcaniclastics [Bandfield et al., 2013]
- A lunar-like megabreccia regolith, once predicted, has not been seen for Mars
- The “nature of the ancient crust” has substantial bearing on dominance of surficial/climate vs. igneous processes in dictating Mars’ early evolution

- Interrogate the crustal clays
- Seek multiple types of clays
- Visit the “rocky” ancient Noachian strata
Mars’ Biggest Mysteries/Decadal-level questions

1) What is the nature of the Noachian crust?

2) Where is the carbon/water? (Mars’ geochemical cycles?)

3) How heterogenous is the Mars mantle?

4) When did the dynamo cease?

5) How old is the Martian surface?
Global View of Aqueous Minerals: II. Why do salts vary in space and time?

Mystery #2: Fundamental Controls on Mars Geochemical Cycles

- We do not understand the composition of the early atmosphere and its relationship to climate and the geologic record
- Need to understand igneous processes; relationship to volatiles, rock mineralogy
 - Seek more than one type of salt indicating changes in geochemistry, especially including those important compositions we have never visited
Mars’ Biggest Mysteries/Decadal-level questions

1) What is the nature of the Noachian crust?

2) Where is the carbon/water? (Mars’ geochemical cycles?)

3) How heterogenous is the Mars mantle/igneous history?

4) When did the dynamo cease?

5) How old is the Martian surface?
Mystery #3: What controls the diversity of igneous rocks? How do igneous processes influence the Mars climate system?

- Enormous igneous diversity discovered in last few years (McSween et al., 2006; Stolper et al., 2013; Agee et al., 2013, Schmidt et al., 2014)
- Volatile content? Reasons for changes through time? Influence on surface climate?
- Timing of differentiation? Amount of crustal recycling?
- Seek 1 (and preferably more) in place, unaltered igneous units to understand temporal context

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 22
Mars’ Biggest Mysteries/Decadal-level questions

1) What is the nature of the Noachian crust?

2) Where is the carbon/water? (Mars’ geochemical cycles?)

3) How heterogenous is the Mars mantle?

4) When did the dynamo cease?

5) How old is the Martian surface?
Mystery #4: When did the dynamo cease?

- Activity and state of the core
- An influence on climate and atmospheric loss?

\[\text{dynamo ceased sometime >3.9Ga} \]
Mystery #4, Answerable? → Seek the megabreccia

- Crust even earlier than the surface age exists to be interrogated and sampled
 - Dynamo timing
 - Early magmatism
 - Early aqueous environments

Holden crater [Grant et al., 2008, Geology]

NE Syrtis/Nili Fossae [Mustard et al., 2009]
Mars’ Biggest Mysteries/Decadal-level questions

1) What is the nature of the Noachian crust?

2) Where is the carbon/water? (Mars’ geochemical cycles?)

3) How heterogenous is the Mars mantle?

4) When did the dynamo cease?

5) How old is the Martian surface?
Mystery #5: How old is the Martian surface?

- Timing of Late Heavy Bombardment?
- Similarity of cratering chronology (and our ability to extrapolate) in the inner solar system
- Seek large units with firmly established ages based on crater frequency
- Examine stratigraphies with globally correlatable upper and lower bracketing units, age well-established
- Igneous rocks, in place, to bracket the age of sedimentary units

Large uncertainties in ages for key periods

figure courtesy S. Werner
A Unique Opportunity, Early Solar System Processes

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 28
A Unique Opportunity, Early Solar System Processes

Total % rocks accessible

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 29
Go Noachian/phylllosian – Mars’ earliest history less explored

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 30
Mars’ Biggest Mysteries/Decadal-level questions

1) What is the nature of the Noachian crust?

2) Where is the carbon/water? (Mars’ geochemical cycles?)

3) How heterogenous is the Mars mantle?

4) When did the dynamo cease?

5) How old is the Martian surface?
Meeting Mars 2020 Science Criteria

Scientific Objectives in Priority Order

<table>
<thead>
<tr>
<th>Objective</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Critically assess any evidence for past life or its chemical precursors, and place detailed constraints on the past habitability and the potential for preservation of signs of life.</td>
</tr>
<tr>
<td>2</td>
<td>Quantitatively constrain the age, context, and processes of accretion, early differentiation, and magmatic and magnetic history of Mars.</td>
</tr>
<tr>
<td>3</td>
<td>Reconstruct the history of surface and near-surface processes involving water.</td>
</tr>
<tr>
<td>4</td>
<td>Constrain the magnitude, nature, timing, and origin of past planet-wide climate change.</td>
</tr>
<tr>
<td>5</td>
<td>Assess potential environmental hazards to future human exploration.</td>
</tr>
<tr>
<td>6</td>
<td>Assess the history and significance of surface modifying processes, including, but not limited to: impact, photochemical, volcanic, and aeolian.</td>
</tr>
<tr>
<td>7</td>
<td>Constrain the origin and evolution of the martian atmosphere, accounting for its elemental and isotopic composition with all inert species.</td>
</tr>
<tr>
<td>8</td>
<td>Evaluate potential critical resources for future human explorers.</td>
</tr>
</tbody>
</table>

Mandatory: Determine if the surface and near-surface materials contain evidence of extant life.

Sample Types in Priority Order

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Subaqueous or hydrothermal sediments (EQUAL PRIORITY)</td>
</tr>
<tr>
<td>1B</td>
<td>Hydrothermally altered rocks or low-T fluid-altered rocks</td>
</tr>
<tr>
<td>2</td>
<td>Unaltered Igneous Rocks</td>
</tr>
<tr>
<td>4</td>
<td>Atmosphere, rocks with trapped atmosphere</td>
</tr>
</tbody>
</table>

Key:
- MEPAG Goals
- I. Life
- II. Climate
- III. Geology
- IV. Prepare for Humans

May include in trapped vesicles
Decadal Goals vs. Landing Site Science Available

- This is very understandable, right now: We have a wealth of information from MSL landing site vetting, MRO data.

- The top 10 sites (science+safety) include:
 - Chloride evaporites and Clay Highlands (e.g. E. Margarifter)
 - Clay(+-Carbonate)-bearing Deltaic/Fan Sediments (e.g. Eberswalde, Jezero, Holden)
 - Groundwaters and Acid Sulfate Precipitation (e.g. Meridiani)
 - Layered sulfate/clay sediments (e.g. Gale)
 - Lavas and Ancient Crater Peak Hills (e.g. Gusev)
 - Noachian/Hesperian type stratigraphy: Clay/Megabreccia - Carbonate/Olivine-Sulfate-Lava (e.g. NE Syrtis)
 - Surface-weathered Layered Clays (e.g. Mawrth)
Decadal-level Diversity?

<table>
<thead>
<tr>
<th>Site</th>
<th>Aqueous minerals</th>
<th>Setting</th>
<th>Plan. Evol.</th>
<th>Strat Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crustal clays</td>
<td>Other Fe/Mg clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eberswalde</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Jezero</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Holden Crater</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Meridiani</td>
<td>~</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gale</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E. Margarifer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gusev</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NE Syrtis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mawrth</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 34
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eberswalde</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Jezero</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Holden Crater</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Meridiani</td>
<td>~</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gale</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>E. Margarifer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>Gusev</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>NE Syrtis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Mawrth</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Relatively few sites support “better-than meteorite” work for answering Decadal questions. But they exist!
Reaching Decadal Science

For site selection, one would ideally have many choices of sites where sedimentary, hydrothermal, and unaltered igneous outcrops were present (as in E2E-iSAG, 2012). Of the ~65 proposed MSL landing sites evaluated by E2E-iSAG (2012), only 10 included outcrops of unaltered igneous rock, and only a few of those sites would be accessible using the proposed EDL system for Mars 2020. This may be too few sites to ensure that a suitable final site could be found (based on results of past landing site selection processes). Combining the MSL EDL capabilities and E2E-iSAG site constraints does not ensure that an adequate landing site would be found. There are two options to relieve this impasse: improve the EDL capabilities of Mars 2020 over those of MSL, and/or relax the E2E-iSAG (2012) requirement that the landing site have access to unaltered igneous rocks in outcrop. The latter diminishes the compellingness of cache science.

Finding 8-7: Access to unaltered igneous rocks as float is considered a threshold-level field site requirement, but requiring that they be collected from known stratigraphic context would add significant science risk to the mission – it may be impossible to access a suitable field site using ‘as applied’ MSL capabilities.

1) Improve Mars2020 EDL
2) Improve drive capabilities and pick instruments for speediest fieldwork
3) Restrict site list early to best Decadal Science to design EDL to, with 1-2 backups with no igneous rocks IDed for contingency
4) Choose to ignore E2E-iSAG requirement of igneous rocks in outcrop now
Decadal-level Diversity?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eberswalde</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>˙</td>
</tr>
<tr>
<td>Jezero</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>˙</td>
</tr>
<tr>
<td>Holden Crater</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>˙</td>
</tr>
<tr>
<td>Meridiani</td>
<td>~</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>˙</td>
</tr>
<tr>
<td>Gale</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>˙</td>
</tr>
<tr>
<td>E. Margarifer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>˙</td>
</tr>
<tr>
<td>Gusev</td>
<td>?</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>NE Syrtis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mawrth</td>
<td>✓</td>
<td>✓</td>
<td>~</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>your site here</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Decadal-Level Questions; Land-on Science to Address – Ehlmann – 1st Mars2020 Landing Site Workshop - 37

Few sites permit immediate, “Land-on Science” causes challenge to collect Decadal-quality samples during primary mission.
[1] allows (a) collection of a more scientifically compelling catch; (b) land-on Decadal-quality science, from day 1, (c) early development of technique needed for fetch rover that collects cache canister.
The cache: Mars 2020+

- We are in the atypical position of needing to think long-term, inclusive of, but also beyond single mission success. Mars2020 is an investment.

Three attributes are essential to making a cache returnable.

1. The cache has enough scientific value to merit returning.
2. The cache complies with planetary protection requirements.
3. The cache is returnable in an engineering sense.

This is a Mars-2020 responsibility.

Under most (all?) scenarios for missions 1 and 2 of an MSR campaign, this requires more precise landing than MSL-like capabilities.
Take home points

• Embrace the opportunity to tackle Mars’ biggest mysteries, think diversity when selecting sites

• Doing Decadal Science: would examine/collect
 – “typical” crustal clays: enigmatic, ubiquitous Noachian process
 – ≥2 of ~12 additional Martian aqueous environments (1 in primary mission)
 – ≥1 unaltered igneous unit(s) (preferably 2, including megabreccia or different age/composition lava or impact melt)
 • If not in place, we are stuck in similar situation to meteorites (provenance uncertain)

• This requires Land-On Science to enable selection and caching of the most diverse sites with Decadal-level questions
 – capability needed anyway for fetch rover
 – Backup sites already IDed in case of delays in development
 – Invest now, to (a) ease pressure on surface operations and (b) create a Decadal-level cache worthy of return
Extras
Mars’ Biggest Mysteries/Decadal-level questions

1) What is the nature of the Noachian crust?
 - Which process(es) were responsible for globally widespread aqueous alteration to clay minerals in “crustal clays”?
 - What is the nature of the early Martian crust: sediments, ashes, lavas?
2) Where is the carbon/water? (More broadly, what were/are Mars’ nature of geochemical cycles?)
 - Controls on surface precipitation of salts, quantities precipitated
 - Mantle gas content → atmospheric composition
3) How heterogenous is the Mars mantle?
 - Nature and timing of differentiation, mixing (e.g. magma ocean), plumes, crustal recycling
 - Controls on the atmosphere (redox, quantity)
4) When did the dynamo cease?
5) How old is the Martian surface?
 - LHB timing and crater chronology scalability across planets
 - Age of formation of rocks vs. crater retention age vs. timing of alteration?
Distribution of Aqueous Minerals on Mars (circa 2014)

- Alteration minerals are in the most ancient terrains
- Ancient environmental diversity (varying with space and time)

Ehlmann et al., 2011, Nature
Carter et al., 2013, JGR

Osterloo et al., 2010, JGR
Niles et al., 2013, Space Sci Rev
Gale Crater:
Sedimentary Environments

Meridiani:
Sedimentary Environments

Gusev Crater?:
Altered volcanic hills, timing uncertain

(Bibring et al., 2006)

surface volcanic activity
Mars global change
clays
sulfates
anhydrous ferric oxides
Noachian
Hesperian
Amazonian