Nili Fossae Carbonate Plains: Solving the Carbonate Puzzle and Examining Olivine from Primitive Melts or Mantle

Land-on science to understand early aqueous environments, reservoirs of carbon, and planetary igneous evolution

Bethany Ehlmann¹, ², Christopher Edwards¹, Sandra Wiseman³, Jack Mustard³

¹Caltech, ²JPL, ³Brown University

NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology.

1st Mars 2020 Landing Site Workshop
May 15, 2014
Isidis Basin
Early/Mid Noachian
(~3.96 Ga, Werner, 2005)

Syrtis Major
Early Hesperian
(~3.5 Ga, Werner, 2011)

Nilli Fossae graben

Carbonate Plains

Jezero crater

Libya Montes

Largest Exposure of Carbonate-Bearing Rocks on Mars

NE Syrtis
Meeting Mars 2020 Science Criteria

Nili Fossae Carbonate Plains geology addresses key science topics in the M2020 SDT report, E2E-iSAG sample criteria:

1. **Aqueous, habitable environments:**
 Largest exposure of carbonate-bearing rock on Mars, formed by precipitation from liquid water
 Ehlmann et al., 2008, Science; Niles et al., 2013, SSR

2. **Understanding Sources and Sinks of the Martian Atmosphere**

3. **Planetary Evolution & Igneous Processes:**
 Capping later mafics overly the largest olvine-rich (ultramafic?) rock unit on Mars, comprised of komatiitic lavas or impact-excavated mantle cumulates
 Hoefen et al., 1997, Science; Hamilton & Christensen, 2005, Geology; Mustard et al.,
In Search of the “Missing” Martian Carbonate?

- Carbonate: a minor phase in Martian dust (<5 wt. %) [Lellouch et al., 2000; Bandfield et al., 2003] and in Martian meteorites [e.g. Bridges, 2001]
- As of 2008, not IDed in rock though expected common, weathering product with water and CO$_2$-atmosphere
- Implications of carbonate paucity:
 - Acidic conditions precluded carbonate formation and preservation? [Fairen et al., 2004; Bullock & Moore, 2007; Mukhin, 1996]
 - Low pCO$_2$ when liquid water was present at the surface? [Chevrier et al., 2007; Halevy et al., 2007]
 - Waters driving aqueous alteration on Noachian Mars were not in contact with the atmosphere? [Ehlmann et al., 2011]
 - After ~4Gyr, always low atmospheric pressure [Hu, Kass, Ehlmann, Yung, in prep]
Carbonate is rare among alteration minerals...

Global View of Water-formed Minerals

Carbonate is rare among alteration minerals...
Where there is carbonate, it is special

- Some aqueous crustal environments were neutral to high pH and never experienced an overprinting acidic period
- Carbonate likely formed in conjunction with olivine weathering/serpentinization
- Aqueous activity in Nili Fossae extended well into the Hesperian (Mangold et al., 2007, JGR)
- Carbonate persists to the present and was not removed by acid weathering
- Heart of figuring out the "case of the missing atmosphere"
Global Olivine Abundance
High-Mg olivine from primitive melts or mantle

Highest Fo#, circumferential to basins

Fo75-100 Fo58-74 Fo42-57

Koeppen & Hamilton, 2008, JGR
Is this site at all typical of Mars or just “weird”?

- Special because high-Mg olivine taps primitive lavas or mantle cumulates
- Other olivine/carbonate-bearing rocks like this may exist on Mars but merely be less exposed
- Mars2020 Primary mission: Special opportunity to investigate a key habitable environment, a key process for geochemical cycling, and a unit that may tap Mars’ mantle
- Mars 2020: Extended mission: access to regionally-extensive type stratigraphy with typical alteration assemblages

GUSEV CRATER:
(Morris et al., 2010, Science)
- 40% olivine
- 35% amorphous silicate
- 25% carbonate

\[
(Mg_{0.62}Fe_{0.25}Ca_{0.11}Mn_{0.02})CO_3
\]
Key Martian Stratigraphies

Ehlmann, et al., 2011, Nature
Part of a Regionally Extensive, Time-Bracketed and Well-Understood Section

(from NE Syrtis area)

- Age Brackets:
 - Lower (oldest): Age of the Isidis impact disrupted the Fe/Mg smectite/pyroxene unit (parts are brecciated)
 - Upper (youngest): Overlying mafics, Hesperian Syrtis Major volcanic province

Ehlmann & Mustard, GRL, 2012
A Schematic History of Water

- Syrtis lavas: ~3.7 Gy
- Nili olivine: ~3.9 Gy
- Nili basement: >3.9 Gy

Fluvial activity

- No alteration
- Partial/local alteration
- Basement alteration

Mangold et al., 2007, JGR
Largest Exposure of Carbonate-Bearing Rocks on Mars

- Isidis Basin
 Early/Mid Noachian
 (~3.96 Ga, Werner, 2005)

- Syrtis Major
 Early Hesperian
 (~3.5 Ga, Werner, 2011)

- Nili Fossae graben
- Carbonate Plains

- Jezero crater
- NE Syrtis

- Isidis Basin
 Early/Mid Noachian
 (~3.96 Ga, Werner, 2005)

- Libya Montes
stratigraphy

cap
olivine carb
Fe/Mg
smectite
Mineralogy & Exposure

Fe/Mg smectite beneath cap unit

Mafic cap unit

Olivine, in dunes and in-situ (partially altered)

Carbonate in bright, polygonally fractured terrain

5 km

\[\text{H}_2\text{O}, \text{Mg,Fe-OH} \]

\[\text{H}_2\text{O}, (\text{Mg})\text{CO}_3 \]

\[\text{Mg,Fe-OH} \]
Banded carbonate beneath olivine-bearing dune

stratigraphy

- cap
- olivine carb
- Fe/Mg smectite
Relationships between key units

Hypothesis: Physical erosion and aeolian transport “clean” eroded, coarse olivine grains to form dunes.
Magnesite formation mechanisms (terrestrial)

(Möller, 1989)

- Hydrothermal fluids
- Serpentinization
- Diagenesis of marine beds
- Weathering of olivine and serpentine rich bodies
- Precipitate in playas fed by ultramafic catchments

For carbonates on Mars,

(1) Olivine-rich rock and
(2) its interaction with water seem to be essential

Observed elsewhere in the region. Ehlmann et al., 2010, GRL; Ehlmann & Mustard, 2012, GRL
A possible analog

Oman
Tracing the Serpenitinization Process through Carbonate Chemistry

Mg(Fe,Ca)-rich Ultramafic rocks (olivine, pyroxene)

<zone of ongoing serpenitinization>

\[(\text{Fe,Mg})_3\text{Si}_2\text{O}_5(\text{OH})_2 + \text{Mg(OH)}_2 + \text{H}_2 \]

Mg-carbonate precipitation

Mg\(^{+2}\)-HCO\(_3\)\(^{-1}\)-Type Waters

Ca\(^{+2}\)-OH\(^{-1}\)-Type Waters
Land-On Carbonate

Carbonate plains/knobs

Mafic cap unit

Nili Fossae Carbonate Plains -- Ehlmann, Edwards, Wiseman, Mustard -- 1st Mars2020 Landing Site Workshop - 31
Preliminary Landing Site Safety

Slope map at 1000 m baseline from MOLA

25km x 20km 18km x 14km

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Requirement</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td>< +0.5 km</td>
<td>-1.5 km</td>
</tr>
<tr>
<td>Latitude</td>
<td>±30°</td>
<td>21.7°</td>
</tr>
<tr>
<td>Relief</td>
<td><100 m on 1km-1,000 m baselines</td>
<td></td>
</tr>
<tr>
<td>Slopes</td>
<td><25°-30° on 2-5 m baselines</td>
<td>needs investigation</td>
</tr>
<tr>
<td>Rocks</td>
<td>~7% rock abundance</td>
<td>appears clear; needs further investigation.</td>
</tr>
<tr>
<td>Radar Reflectivity</td>
<td>-20 to +15 dB at Ka band</td>
<td></td>
</tr>
<tr>
<td>Thermal Inertia/Albedo</td>
<td>>100 J m⁻² s⁻⁰.⁵ K⁻¹ <0.25</td>
<td>>230 m⁻² s⁻⁰.⁵ K⁻¹ <0.19</td>
</tr>
</tbody>
</table>
Landing Site Safety: Dunes

Testing the MSL mobility system
Durmont Dunes, CA, Summer ‘12
Landing Site Safety: Dunes

- Large-ellipse (25 km x 20 km at time of downselect) meant MSL landing in the dunes was an unacceptable risk.
- Reduced ellipse size, range-trigger, or terrain-relative navigation (TRN) would remove this risk.

See Golombek presentation yesterday.
Nili Fossae Carbonate Plains: A Summary

• Immediate Access to Land-On Primary Science
 – Extensive aqueous alteration to form carbonate
 • Testing the relative importance of sedimentation, weathering, and hydrothermal processes for early aqueous environments
 • No later overprinting by an “acid bath”
 • How much carbonate? Stored by what process? Important questions for understanding the global reservoir
 – High-Mg mafic/ultramafic rocks
 • preserves a record of early igneous processes (komatiitic-type melts) or a record of impact processes and mantle-derived cumulates
 • mafic/ultramafic rocks Materials for answering important questions about the nature of the Mars mantle and history of volcanism
• Diverse, fundamental questions about ancient Mars are accessible here, providing decades of work on returned samples